Unit 4 Test Review

Complete each problem in your notes and check your answers on the following slide.

Complete the table below

Exponential Notation	Repeated Factors	Standard Notation
4 ⁴		
	2 * 2 * 2 * 2	
8 ²		
	3 * 3 * 3	

Exponential Notation	Repeated Factors	Standard Notation
44	4 * 4 * 4 * 4	256
24	2 * 2 * 2 * 2	16
8 ²	8 * 8	64
33	3 * 3 * 3	27

Simplify:

1)
$$20 - 8 \div 2^2 \times 3$$

2)
$$(16-4 \div 2)^2 \times 3$$

1)
$$20 - 8 \div 2^2 \times 3$$

$$20 - 8 \div 2^{2} * 3$$
 $20 - 8 \div 9 * 3$
 $20 - 2 * 3$
 $20 - 6$

$(16-4\div 2)^2\times 3$

$$(16-4-2)^{2}*3$$

 $(16-2)^{2}*3$
 $(14)^{2}*3$
 $196*3$
 588

Rewrite each statement as an expression

1) 7 more than the product of 8 and n

2) Half of p, decreased by 4

3) The quotient of triple p and 16

1) 7 more than the product of 8 and n

2) Half of p, decreased by 4

3) The quotient of triple p and 16

Rewrite each expression as a statement

1) 9r / 27

2) 6n - 6

3) 5w + 7

1) 9r / 27

The product of 9 and r, divided by 27

2) 6n - 66 less than the product of 6 and n

3) 5w + 7

The product of 5 and w, increased by 7

Many solutions, one solution, or no solutions?

1)
$$5 + p = p + 5$$

2)
$$m + 5 * 3 = m + 5$$

3)
$$7n = 0$$

Write an equation that generalizes the pattern

$$5*3+2=2+5+5+5$$

$$12 * 3 + 2 = 2 + 12 + 12 + 12$$

$$9*3+2=2+9+9+9$$

$$5*3+2=2+5+5+5$$

$$12 * 3 + 2 = 2 + 12 + 12 + 12$$

$$9*3+2=2+9+9+9$$

Find the area of the rectangle using the distributive property. Write two different equations demonstrating the distributive property.

$$6(20 + 6) = 156$$
 inches squared

$$6(20) + 6(6) = 156$$
 inches squared

Factor out the GCF using the distributive property

2) 25 + 75

25 + 75

Graph the following inequalities

$$x \ge 2$$

x < 7

$x \ge 2$

x < 7

Write the inequality that best represents the graph

x > -1

Simplify:

a.) | 13 - 5 |

b.) |-22|

Match the following inequalities with the statements that best represent them:

- A. A number that is at least 24
- B. Any number 24 or below
- C. A number that is greater than 16
- D. Any number below 16

Match the following inequalities with the statements that best represent them:

- A. A number that is at least 24
- B. Any number 24 or below
- C. A number that is greater than 16
- D. Any number below 16

Show the absolute value of each number below.

1.
$$|-2| =$$
 2. $|-3| =$ **3.** $|-8| =$

Show the absolute value of each number below.

Give 3 possible solutions for each inequality

1.)
$$18 \le t$$

18
$$\leq$$
 t 3.) y $<$ 9
$$y = 2$$

$$y = 20$$

$$y = 18$$

$$y = 8$$

4.)
$$x \ge 5$$

 $x = 5$
 $x = 8$
 $x = 12$

Write an inequality to represent each statement:

A) A number that is at most 12

B) A maximum of 45

C) Any number that is less than 7

D) A minimum of 5

Write an inequality to represent each statement:

A) A number that is at most 12 x < 12

B) A maximum of 45 $t \le 45$

C) Any number that is less than 7 p < 7

D) A minimum of 5 $d \ge 5$

The maximum number of players on a baseball field is 9

Represent the statement with inequalities.

Graph the solution set that makes both inequalities true

Describe how your graph represents the situation

The maximum number of players on a baseball field is 9.

There are dots on 0 through 9 because you cannot have less than 0 players on the field, more than 9 people, or fractions/decimals of players.

Write true or false for each statement. Show your work.

c.)
$$|-9| \le 9$$

b.)
$$|-2| \neq 2$$

d.)
$$|-14| \ge |14|$$

When you tell your math teacher that you didn't think you had to show work

Plot 2 points with an absolute value of 9

Plot 2 points with an absolute value of 9

Find the mean absolute deviation of the following data:

45, 80, 71, 95, 34

Find the mean absolute deviation of the following data

Data	Mean	Distance (Abs Value)
45	65	20
80	65	15
71	65	6
95	65	30
34	65	31
Sum: 325	325/5 = 65	102/5 = 20.4 (MAD)

Point *M* is located at (-7,0)

What is located 6 units from point M?

 \bigcirc Point A

 \bigcirc Point B

 \bigcirc Point C

What is the distance between the two points?

*Create a number sentence!

141 + 1314 + 3